Math:Integration by parts: Difference between revisions
Created page with "Integration by parts is basically just a formula to memorize. Here's how I write it: <math> \int uv = uV-\int u'V </math> ...where: <math> u=u(x), v=v(x), V=\int v(x) \; \mathrm{d} x, u'=\frac{ \mathrm{d} }{ \mathrm{d} x} u(x) </math> So written out fully, integration by parts looks like: <math> \int u(x)v(x) \;\mathrm{d}x = u(x)\int v(x) \; \mathrm{d}x-\int \left( u'(x) \left( \int v(x) \; \mathrm{d}x) \right) \right) \; \mathrm{d}x </math> This formula is very..." |
No edit summary |
||
Line 62: | Line 62: | ||
Now let's finish this up: | Now let's finish this up: | ||
<math> | <math>uV - \int u'V | ||
uV - \int u'V | |||
= -\frac{4}{3} x \left( \sin(2-3x) \right) - \frac{-4}{9} \sin(2-3x) + C | = -\frac{4}{3} x \left( \sin(2-3x) \right) - \frac{-4}{9} \sin(2-3x) + C | ||
= -\frac{4}{3} x \left( \sin(2-3x) \right) - \frac{-4}{9} \sin(2-3x) + C | = -\frac{4}{3} x \left( \sin(2-3x) \right) - \frac{-4}{9} \sin(2-3x) + C | ||
= \ | = \boxed { -\frac{4}{3} x \left( \sin(2-3x) \right) + \frac{ 4}{9} \sin(2-3x) + C } | ||
</math> | </math> |
Latest revision as of 15:04, 4 March 2025
Integration by parts is basically just a formula to memorize. Here's how I write it:
[math]\displaystyle{ \int uv = uV-\int u'V }[/math]
...where:
[math]\displaystyle{ u=u(x), v=v(x), V=\int v(x) \; \mathrm{d} x, u'=\frac{ \mathrm{d} }{ \mathrm{d} x} u(x) }[/math]
So written out fully, integration by parts looks like:
[math]\displaystyle{ \int u(x)v(x) \;\mathrm{d}x = u(x)\int v(x) \; \mathrm{d}x-\int \left( u'(x) \left( \int v(x) \; \mathrm{d}x) \right) \right) \; \mathrm{d}x }[/math]
This formula is very useful for when you have two functions, denoted as [math]\displaystyle{ u(x) }[/math] and [math]\displaystyle{ v(x) }[/math], multiplied together into 1 function.
Examples[edit]
So for instance: [math]\displaystyle{ \int 4x\cos (2-3x) \; \mathrm{d}x }[/math]
can be split up into:
[math]\displaystyle{ u(x)=4x, v(x)=\cos (2-3x) }[/math]
which then calculating all the necessary stuff:
[math]\displaystyle{ u(x) = 4x, v(x) = \cos (2-3x), u'(x) = 4, V(x) = -\frac{\sin(2-3x)}{3} + C }[/math]
The first part of the formula,
[math]\displaystyle{ uV = 4x \left( -\frac{\sin(2-3x)}{3} \right) + C = -\frac{4}{3} x \left( \sin(2-3x) \right) + C }[/math]
And the second part,
[math]\displaystyle{ \begin{array}{lcl} \int u'V = \frac{-4}{3} \int \sin(2-3x) \; \mathrm{d}x = \frac{-4}{3} \cdot \frac{1}{3} \cdot \sin(2-3x) + C = \frac{-4}{9} \sin(2-3x) + C \end{array} }[/math]
Now let's finish this up:
[math]\displaystyle{ uV - \int u'V = -\frac{4}{3} x \left( \sin(2-3x) \right) - \frac{-4}{9} \sin(2-3x) + C = -\frac{4}{3} x \left( \sin(2-3x) \right) - \frac{-4}{9} \sin(2-3x) + C = \boxed { -\frac{4}{3} x \left( \sin(2-3x) \right) + \frac{ 4}{9} \sin(2-3x) + C } }[/math]